THE REAL EXPANSION RATE OF MESHERS AND MICROGRAFTS: THINGS WE SHOULD KEEP IN MIND

Kamolz L.P., Schintler M., Parvizi D., Selig H., Lumenta D.B.

Introduction

Skin graft expansion is widely used in plastic surgery and related fields, but there is ample evidence in the literature that skin graft meshers do not provide their claimed expansion rates. Although this finding might not be new for the majority of surgeons, less is known about surgeons’ actual knowledge of expansion rates. The aim of this study was to evaluate the true expansion rates of commonly used expansion techniques with regard to claimed, achieved, and polled results. In the first part of the study, 54 surgeons were polled during an annual burns meeting regarding the most commonly used expansion techniques and expansion ratios; in the second step the true (achievable) expansion rates of the most widely used meshers and micrografts were analysed; and in third step, a poll involving 40 surgeons was conducted to estimate the true expansion rates of the most frequently used skin expansion techniques. The skin meshers (1:1.5 / 1:3) did not achieve their claimed values: (1:1.5) 84.7% of the claimed expansion, (mean ± SD: 1:1.27 ± 0.15) and (1:3) 53.1% of the 1:3 (1:1.59 ± 0.15) mesher. The use of the micrografting technique resulted in 99.8% of the 1:3 (1:2.99 ± 0.09), 93.6% of the 1:4 (1:3.74 ± 0.12) and 93.8% of the 1:6 (1:5.63 ± 0.12) claimed expansion rates, respectively. In general the surgeons overestimated the achievable expansion rates. In general the achieved expansion rate was lower than the estimated and claimed expansion rates. The micrografting technique provided reliable and valid expansion rates compared to the skin meshers. We recommend using the micrograft technique when large expansion ratios are required, for example in severe extensive burns.

Materials and methods

As a first step we conducted a survey among 54 burn surgeons in order to evaluate the most widely used skin
expansion techniques and their respective expansion ratios. Data were collected by use of an anonymous written questionnaire including staff grade, mesh and micrografting device.

In the second step of the study, we used a carrier-based mesher [(DermacarriersTM II in combination with (Zimmer, Dover, Ohio, USA)] for mesh expansion (1:1.5 and 1:3) and the Meek Micrograft Gauze (Humeca B.V., Enschede, The Netherlands) for micrograft expansion (1:3, 1:4, and 1:6). One experienced surgeon harvested skin grafts from the anterior thigh with a dermatome (Air-Dermatome, Zimmer, Dover, Ohio, USA), which was set at the 10 mark. Meshed skin graft surface area was measured before and after expansion. A total of 21 skin grafts were used per mesh expansion (1:1.5 and 1:3). Micrografting expansion rates (1:3, 1:4 and 1:6) were directly assessed on the micrografting gauzes before and after unfolding on a flat surface. The details of the micrografting technique were described in a previous work.10 A total of seven micrografting gauzes were assessed per expansion (1:3, 1:4, and 1:6). A standard SI ruler was used to measure length and width, and the surface area was calculated afterwards.

In the second survey, 40 surgeons were polled during an annual burn meeting for their estimation of expansion rates. Data collected by the use of an anonymous written questionnaire included staff grade, mesh and micrografting device used, estimation of respective expansion rates, and indications for use of either technique.

Throughout this report, the term “achieved” expansion rate refers to the technical results and “estimated” to the polling results. Claimed, achieved, and estimated expansion rates are presented in a descriptive fashion below. When comparing two groups, expansion rates were analysed using the Mann-Whitney rank sum test. If more than two groups were tested, Kruskal-Wallis was followed by Dunn’s testing method for multiple comparisons. Post-testing was only performed in cases of statistical significance, and \(p < 0.05 \) was considered statistically significant (GraphPad Prism software, La Jolla, California, USA).

Results

In the first part of the study, involving 54 participants, the most used mesh expansion rate was 1:1.5 (92% of all surgeons), followed by 1:3 (82%), 1:1 (23%), 1:6 (16%), 1:4 (13%), 1:2 (10%), and 1:9 (0%); 92% of participants used carrier-based meshers; 50% of all surgeons used the Meek technique; and the most used expansion rate was 1:6 (41% of all surgeons), followed by 1:4 (38%), 1:3 (13%), and 1:9 (6%).

The achieved expansion rates of the skin meshers differed from claimed values: the 1:1.5 carrier attained a 1:1.27 \(\pm\) 0.15 (\(\pm\) SD / 84.7%) expansion, while the 1:3 mesher attained a 1:1.59 \(\pm\) 0.15 expansion, representing only 53.1% of claimed values. Unfolding of the micrografting gauzes resulted respectively in 99.8% of the 1:3 expansions (1.299 \(\pm\) 0.09), 93.6% of the 1:4 expansions (1.374 \(\pm\) 0.12), and 93.8% of the 1:6 expansions (1.563 \(\pm\) 0.12) (Table I). There was a statistically significant difference between the achieved 1:3 mesh (1:1.59 \(\pm\) 0.15) and the 1:3 micrografting (1:2.99 \(\pm\) 0.09) expansion rates (\(p = 0.0001 \) (Table I).

All 40 participants polled in the third part were familiar with mesh skin expansion devices. The expected mesh expansion rates represented respectively 97.3% of the 1:1.5 (1:1.46 \(\pm\) 0.39) claimed values and 82.4% of those of 1:3 (1:2.47 \(\pm\) 0.69). The same holds true for the estimated ratios for the micrografting technique, which represented respectively 86.7% of the 1:3 (1:2.60 \(\pm\) 0.53) claimed rates, 89.6% of the 1:4 claimed rates (1:3.58 \(\pm\) 0.67), and 89.3% of the 1:6 (1:5.36 \(\pm\) 1.08) (Table I). The participants familiar with the MEEK technique mainly based their indication for the use of one technique or the other either on the expansion rate (12/21 = 57.1%), % TBSA (6/21 = 28.6%) or on a combination of both (3/21 = 14.3%). All participants overestimated the achievable 1:3 expansion rates by 55%, and this finding was statistically significant (\(p = 0.0004 \) (Table I).

Table I - Expansion rates: claimed, achieved (clinical results, grey-shaded), and estimated (polling results)

<table>
<thead>
<tr>
<th>Expansion rate claimed</th>
<th>Expansion rate achieved</th>
<th>Expansion rate achieved: claimed</th>
<th>Estimated expansion rate: (polling results)</th>
<th>Estimated expansion rate: claimed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesh 1:1.5</td>
<td>1.27 (\pm) 0.15 (n=21)</td>
<td>84.7%</td>
<td>1.46 (\pm) 0.39 (n=40)</td>
<td>97.3%</td>
</tr>
<tr>
<td>Mesh 1:3</td>
<td>1.59 (\pm) 0.15 (n=21)#</td>
<td>53.1%</td>
<td>2.47 (\pm) 0.69 (n=40)$</td>
<td>82.4%</td>
</tr>
<tr>
<td>Micrograft 1:3</td>
<td>2.99 (\pm) 0.09 (n=7)#</td>
<td>99.8%</td>
<td>2.60 (\pm) 0.53 (n=21)$</td>
<td>86.7%</td>
</tr>
<tr>
<td>Micrograft 1:4</td>
<td>3.74 (\pm) 0.12 (n=7)#</td>
<td>93.6%</td>
<td>3.58 (\pm) 0.67 (n=21)$</td>
<td>89.6%</td>
</tr>
<tr>
<td>Micrograft 1:6</td>
<td>5.63 (\pm) 0.12 (n=7)#</td>
<td>93.8%</td>
<td>5.36 (\pm) 1.08 (n=21)$</td>
<td>89.3%</td>
</tr>
</tbody>
</table>

\#: Achieved mesh 1:3 versus achieved micrograft 1:3, \(p = 0.0001 \)

\$: Achieved mesh 1:3 versus estimated mesh 1:3, \(p = 0.0004 \)
RÉSUMÉ. Les techniques pour l’extension des greffes cutanées (en filet ou microgreffes) sont largement utilisées, mais il est amplement prouvé que les greffes cutanées en filet ne correspondent aux taux d’expansion réclamés. Il est bien possible que cette constatation ne constitue pas rien de nouveau pour les chirurgiens, mais nous savons encore moins des connaissances réelles des chirurgiens pour ce qui concerne cette matière. Le but de cette étude était d’évaluer l’exact taux d’expansion des techniques d’expansion couramment utilisées à l’égard des résultats revendiqués, réalisés et soumis à sondage. Dans la première partie de l’étude, 54 chirurgiens ont été interrogés lors d’une réunion annuelle des brûlologues sur les techniques d’expansion les plus utilisées et les rapports d’expansion. Dans la deuxième étape, les taux effectifs d’extension (possibles) des greffes en filet et les microgreffes les plus utilisées ont été analysés. Dans la troisième étape, un sondage auprès de 40 chirurgiens a été réalisé pour évaluer les taux effectifs des techniques d’expansion cutanées les plus utilisées. Les greffes en filet évaluées (1 : 1,5 / 1 : 3) en effet n’atteignaient pas les valeurs revendiquées: 1:1,5 = 84,7% de l’expansion revendiquée (moyenne ± écart-type = 1:1.27 ± 0,15) et 1:3 = 53,1% du mesher 1:3 (1:1.59 ± 0,15). L’utilisation de la technique de la microgreffe a produit des taux revendiqués d’expansion de 99,8% dans le cas de 1:3 (1:2.99 ± 0,09), de 93,6% dans le cas de 1:4 (1:3.74 ± 0,12) et de 93,8% dans le cas de 1:6 (1:5.63 ± 0,12). En général, les chirurgiens ont surestimé les taux d’expansion réalisables. Ainsi, toutes choses considérées, le taux d’expansion effectivement réalisé était inférieur aux divers taux d’expansion estimés et revendiqués. Les microgreffes montrent des taux d’expansion fiables et valides par rapport aux greffes en filet. Les Auteurs recommandent l’utilisation de la technique de la microgreffe quand il faut obtenir un rapport d’expansion élevé, par exemple dans le cas de brûlures graves de grande extension.

Mots-clés: transplantation cutanée, greffe cutanée, en filet, microgreffe, technique de Meek
BIBLIOGRAPHY

Conference presentations. This paper won an award for the best poster presentation at the Sixteenth Congress of the International Confederation for Plastic Reconstructive and Aesthetic Surgery (IPRAS), Vancouver, Canada, May 2011. It was also presented at the Burn Conference of the German-speaking countries (DAV), Mayrhofen, Austria, January 2013.

This paper was accepted on 27 February 2013.