REVERSE-FLOW ANTEROLATERAL THIGH PERFORATOR: AN AD HOC FLAP FOR SEVERE POST-BURN KNEE CONTRACTURE

Ismail H.A. ⚪ El-Bassiony L.E.

Department of Plastic Reconstructive Surgery, Mansoura University, Mansoura, Egypt

SUMMARY. We evaluate function outcomes of the reverse-flow ALT perforator flap to reconstruct severe post-burn knee contracture. Between October 2012 and December 2014, 10 patients with severe post-burn knee contracture were subjected to reconstruction with 10 ipsilateral reversed-flow ALT perforator flaps. All the patients were male. Ages ranged from 15 to 47 years (mean = 32 years). Time from burn injury to patient presentation ranged from 2-8 months. All patients demonstrated post-burn flexion contracture of the knee joint, ranging from 35 to 75 degrees. Flap sizes ranged from 8×16 to 12×26 cm. The flaps and skin grafts were carried out without major complications. Only minor complications occurred, such as transient, mild congestion immediately after inset in two flaps. Two flaps developed superficial necrosis at the distal edge. One case sustained partial skin graft loss due to haematoma. One case complained of skin hyperpigmentation and hypertrophic scars around the graft. Secondary debulking procedures were required in two cases. The entire donor sites were closed by partial thickness skin graft with acceptable appearance, except one case that was closed primarily. Eight out of ten patients (80%) demonstrated gradual improvement in range of knee motion after a specialized rehabilitation program. Two patients (20%) did not get back full range of motion. ALT perforator flap is the cornerstone for the reconstruction of soft-tissue defects around the knee with acceptable aesthetic and functional results provided that the following items are fulfilled: inclusion of muscle cuff around the pedicle, the pivot point, prevention of pedicle compression after transfer and early surgical intervention on the post-burn knee contracture.

Keywords: post-burn knee contracture, reverse flow ALT flap

RÉSUMÉ. Nous avons évalué les résultats fonctionnels après utilisation du lambeau perforant antérolatéral de cuisse à flux rétrograde dans la reconstruction des rétractions importantes du genou après brûlure. Entre octobre 2012 et décembre 2014, 10 patients présentant ces rétractions ont subi une reconstruction avec ce type de lambeau perforant. Tous ces patients étaient de sexe mâle, les âges s'étaient de 15 à 45 ans (moyenne 32 ans). Le moment chirurgical par rapport la brûlure se situait entre 2 à 8 mois. Tous les patients présentaient une rétraction en flexion du genou entre 35 et 75 degrés. La dimension des lambeaux était de 8 x 16 jusqu'à 12 x 26. Les lambeaux et les greffes cutanées se déroulèrent sans complication majeure. Seule une complication légère et transitoire a été observée avec une congestion de moyenne importance après mise en place du lambeau. 2 lambeaux développèrent une nécrose superficielle au niveau d’une berge distale. 1 cas présentât une nécrose partielle de la greffe cutanée en rapport avec un hématome. 1 autre cas développa une hyper pigmentation et une hypertrophie cicatricielle autour de la greffe. Un dégraissage secondaire fut nécessaire dans 2 cas. La totalité des sites donneurs fut couverte par des greffes de peau demie épaisse avec un aspect acceptable sauf dans 1 cas de fermeture primaire. 80% des patients présentaient une amélioration de la mobilité du genou après une réadaptation spécialisée. 2 patients (20%) n’ont pas récupéré complètement leur mobilité. Le lambeau perforant antérolatéral de cuisse à flux inversé est le lambeau de choix pour la reconstruction des pertes de substance du genou avec des résultats esthétiques et fonctionnels acceptables dans la mesure où l’on respecte certaines règles: confection d’un manchon musculaire autour du pédicule, recherche du point pivot, prévention d’une compression du pédicule après transfert et enfin précocité du geste chirurgical après la brûlure.

Mots-clés: rétraction du genou après brûlure, lambeau perforant antérolatéral de cuisse à flux rétrograde

Introduction

Reconstruction of post-burn contracture scar of the knee is a challenging problem. Surgical release of post-burn knee contracture results in large soft tissue defect, exposing important structures in the popliteal fossa that require soft-tissue coverage. The aim of soft-tissue reconstruction around the knee joint is to restore function and an aesthetically-acceptable appearance. Well-vascularised tissue is necessary to ensure the wound heals. Different solutions have been described in the literature, such as local cutaneous flaps, fasciocutaneous flaps, muscle flaps or free flaps. The goal of the reconstruction plan is to find the simplest technique likely to achieve wound closure with minimal donor-site morbidity.
In 1984, Song et al. first reported the anterolateral thigh flap as a septocutaneous perforator-based flap. It has gained great popularity, especially in mainland China, Japan and Taiwan.

If a soft-tissue defect around the knee requires flap coverage, reverse-flow anterolateral thigh (RLAT) perforator flap can be a reliable, effective and durable option. This was first introduced in four cases by Zhang.

In our current study, we evaluate function outcomes after the use of reverse-flow ALT perforator flap to reconstruct severe post-burn knee contracture.

Patients and methods

Between October 2012 and December 2014, 10 patients with severe post-burn knee contracture were subjected to reconstruction with 10 ipsilateral distally based ALT perforator flaps. All the patients were male. Ages ranged from 15 to 47 years (mean = 32 years). Time from burn injury to patient presentation at our clinic ranged from 2-8 months. All of the patients demonstrated post-burn flexion contracture of the knee joint, ranging from 35 to 75 degrees. Flap sizes ranged from 8×16 to 12×26 cm (Table I).

There were absolute and relative exclusion criteria. The absolute criteria included: patient not fit for surgery, burnt donor sites and stiff knee joint. The relative criteria included smokers, who had to stop smoking at least one month before the procedure. All the operations were performed under spinal anesthesia except for one patient who had general anesthesia.

Operative technique

A straight line was marked between the anterior superior iliac spine and the lateral edge of the patella on the ipsilateral side. The midpoint of this line was identified and a 3 cm radius circle was outlined. The perforators that are usually located within this circle were detected by a handheld portable Doppler. The desired size of the flap was marked and centered over the perforators (Fig. 1).

We began by releasing the post-burn knee contracture by surgical scarotomy, debridement of the fibrous tissues as much as possible, haemostasis and evaluation of the size of the defect to determine the size of the flap. After releasing the contracture, a subsequent tendon exposure occurred. We then dissected the flap through the lazy-S incision over the medial margin of the flap, down to the subfascial plane, proceeding with dissection laterally in the subfascial plane to detect perforators passing within either muscle or septum. Searching about the significant perforator, the lateral margin of the flap was determined according to the site of the perforator, if needed. The descending branch of the lateral circumflex femoral artery (LCFA) was dissected proximally up to the profunda femoral artery (to its origin) to determine the type of perforator. According to the origin of the perforator, if it arose from the descending branch of the LCFA (type I and III pedicles), the pedicle was divided proximally just after the bifurcation points. If it originated from the transverse branch of the LCFA, called type II and IV pedicles, dissection was more difficult than for types I and III. In the current study, the perforator arose from the transverse branch of the LCFA in one patient only. In this situation, the flap was raised after dividing the lateral circumflex femoral vessel proximal to the bifurcation of the transverse and descending branches, also trying to preserve the venae comitantes as much as possible. Then the lateral margin of the flap was completed to determine the final dimensions of the flap to be elevated. We preferred to leave a cuff of muscle around the perforators. We also preferred to preserve more than two perforators to the flap. Dissection of the DLCF branch was continued distally down to the pivot point, which was determined during the flap design. Before dividing the pedicle, we usually assessed retrograde flow into the flap by clamping the pedicle proximally. If there was a good retrograde flow into the flap, the pedicle was ligated and divided proximally just after the bifurcation points (type I and III pedicles) and before the bifurcation points (type II and IV pedicles). A skin incision was made between the distal end of the flap and the defect, then skin flaps were bilaterally elevated in the subcutaneous plane. The elevated flap was transposed to the defect through this dissected area, and the pedicles were covered with elevated skin flaps and split-thickness skin grafts. The donor site was closed with a split-thickness skin graft or, in one patient, primarily (8 cm or less). Drains were placed beneath the flaps and the donor sites.

In the postoperative period, the patients continued to receive IV 3rd generation cephalosporin for 7-10 days. The flap was checked for viability after 24 hours. The drain was re-

<table>
<thead>
<tr>
<th>No.</th>
<th>Age (yrs)/ Sex</th>
<th>Flexion contracture degree</th>
<th>Flap size/cm</th>
<th>Type of perforator</th>
<th>Donor site closure</th>
<th>Functional outcome</th>
<th>Complications</th>
<th>Follow-up/month</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15/M</td>
<td>70</td>
<td>10×22</td>
<td>Musculocutaneous</td>
<td>Skin graft</td>
<td>10° of extension</td>
<td>None</td>
<td>27</td>
</tr>
<tr>
<td>2</td>
<td>24/M</td>
<td>55</td>
<td>9×20</td>
<td>Musculocutaneous</td>
<td>Skin graft</td>
<td>Full ROM</td>
<td>None</td>
<td>22</td>
</tr>
<tr>
<td>3</td>
<td>30/M</td>
<td>50</td>
<td>8×19</td>
<td>Musculocutaneous</td>
<td>Skin graft</td>
<td>Full ROM</td>
<td>None</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>45/M</td>
<td>50</td>
<td>12×26</td>
<td>Musculocutaneous</td>
<td>Skin graft</td>
<td>Full ROM</td>
<td>Hypertrophic scar</td>
<td>19</td>
</tr>
<tr>
<td>5</td>
<td>40/M</td>
<td>45</td>
<td>8×19</td>
<td>Septocutaneous</td>
<td>Skin graft</td>
<td>Full ROM</td>
<td>None</td>
<td>17</td>
</tr>
<tr>
<td>6</td>
<td>19/M</td>
<td>40</td>
<td>8×16</td>
<td>Musculocutaneous</td>
<td>Primary closure</td>
<td>Full ROM</td>
<td>Hypertrophic scar</td>
<td>16</td>
</tr>
<tr>
<td>7</td>
<td>29/M</td>
<td>60</td>
<td>10×24</td>
<td>Septocutaneous</td>
<td>Skin graft</td>
<td>10° of extension</td>
<td>Superficial epidermolysis of the distal edge</td>
<td>13</td>
</tr>
<tr>
<td>8</td>
<td>35/M</td>
<td>45</td>
<td>9×23</td>
<td>Musculocutaneous</td>
<td>Skin graft</td>
<td>Full ROM</td>
<td>None</td>
<td>12</td>
</tr>
<tr>
<td>9</td>
<td>36/M</td>
<td>45</td>
<td>8×20</td>
<td>Musculocutaneous</td>
<td>Skin graft</td>
<td>Full ROM</td>
<td>Hypertrophic scar</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>47/M</td>
<td>51</td>
<td>9×21</td>
<td>Musculocutaneous</td>
<td>Skin graft</td>
<td>Full ROM</td>
<td>None</td>
<td>6</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16.2</td>
</tr>
</tbody>
</table>

RALT = reverse flow anterolateral thigh flap, ROM = range of motion.
moved after 48 hours. The knees were splinted in an extended position for 1 week after surgery.

The patients were discharged 10 to 14 days after surgery, after the skin graft had started to heal well, and they were followed-up at regular intervals.

Physiotherapy

Returning the patient to the pre-injury function level was of utmost importance. 10-14 days after surgery, a specialized program of physiotherapy was started. It consisted of passive and active range of motion (ROM) exercises for the knee, strengthening exercises for all muscle groups around the knee, and proprioception enhancement. Our aim was for the patient to regain normal ROM and power comparable to the other side, and return to the pre-injury function level.

Functional reconstruction was assessed using the Goniometer to measure both the passive and active range of motion (ROM) of the ankle after one month of physiotherapy.

Results

Ten adult male patients were included in the study. Ten defects were created after surgical release of post-burn contracture scar of the knee joint. The flaps and skin grafts were carried out without major complications. Only minor complications occurred, such as transient, mild congestion immediately after inset in two flaps, which resolved within a few days with no adverse sequela on flap survival. Two flaps developed superficial necrosis at the distal edge and were treated with debridement and skin graft. One case sustained partial skin graft loss due to haematoma: the wound gradually healed after daily dressing. One case complained of skin hyperpigmentation and hypertrophic scars around the graft. Secondary debulking operations were required in two cases.

The entire donor sites were closed with partial thickness skin graft with acceptable appearance, except for one case that was closed primarily. No remarkable donor site seroma or haematoma was observed except in one case. Blood supply to the flaps was provided by musculocutaneous perforators in eight cases; in the other two cases septocutaneous perforator was observed coursing in the space between the rectus femoris and vastus lateralis muscles. Two to four perforators were identified during flap elevation in all cases. Surgery time ranged from 80 to 120 minutes (mean = 95 minutes). Length of hospital stay ranged from 10-14 days (mean = 11.1 days) (Table II). The follow-up period ranged from 6 to 27 months (mean = 16.2 months).

As regards function outcome, eight of the ten patients demonstrated a gradual improvement in range of knee motion.

Table II - Outcome data

<table>
<thead>
<tr>
<th>Items</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operative time (minutes)</td>
<td>95</td>
</tr>
<tr>
<td>Hospital stay (days)</td>
<td>11.1</td>
</tr>
<tr>
<td>Complication</td>
<td>3(30%)</td>
</tr>
<tr>
<td>Function satisfaction</td>
<td>8(80%)</td>
</tr>
<tr>
<td>Aesthetic satisfaction</td>
<td>7(70%)</td>
</tr>
</tbody>
</table>
after a specialized program of rehabilitation that was initiated
10-14 days after surgery. Two patients did not regain full range
of motion. However the range of motion they achieved was
good enough not to disturb their usual motions.

Discussion

Improper treatment of deep burn wounds around the knee
joints inevitably results in post-burn contractures. When they
occur, they should be released to restore full functional ability
of the lower extremity. The aim of knee contracture release
is to restore the function and aesthetic contour of the knee
joint. Different modalities have been used to treat post-burn
knee contracture. They include nonsurgical procedures such as
splinting. External fixation systems have also been used. However, these nonsurgical procedures are not efficient in
chronic contractures, and are used mainly for prevention of
contracture.

Various surgical procedures have been used for reconstruction,
 such as local flaps, regional and free flaps. Local cuta-
neous flaps, such as rotation flaps or advancement flaps, can
be used for only small defects around the knee. Local fas-
ciocutaneous flaps, such as the lateral sural cutaneous artery
island flap, the saphenous flap, and the lateral or medial genic-
ular artery island flap are usually associated with sacrificed
perforator or sensory disturbance around the knee joint.

Local flaps have no role when extensive soft-tissue defects
are present. Most muscle flaps such as lateral or medial gas-

trocnemius, soleus, sartorius, vastus medialis and distally based
vastus lateralis are too bulky to cover soft tissue defects
around the knee and usually lead to aesthetic and functional
deficits. Free flaps can be used to cover knee defects when
local flaps are unavailable or the knee soft tissue defect is ex-
tensive, but the deep-sited recipient vessels at this level make
the vascular Anastomosis of free flaps more difficult, postop-
erative care also.

Gravvanis et al. reported that perforator flaps have been a
ture revolution in soft tissue reconstruction around the knee:
they can also replace “like with like” with minimal donor-site
morbidity. They also presented the successful use of distally
based ALT flap with a venous supercharge to reconstruct tibial
tuberosity. They recommended the venous supercharge to this
flap as a routine procedure because it can eliminate any vas-
cular problems.

The RALT perforator flap is characterized by:
1. long vascular pedicle;
2. very large skin territory;
3. possible combination with fascia lata for patellar tendon
 reconstruction (in the event of patellar tendon loss);
4. donor-site scar can be easily hidden with minimal mor-
 bidity;
5. moderate thickness;
6. no scarification of a major artery or muscle;
7. it allows early mobilization; patients can return to their
 normal daily activities in a short time.

Zhang was the first to describe the reversed anterolateral
thigh island flap, and reported that the flap is reliable based on
the anastomosis of the lateral superior genicular artery with de-
scending branch of LCFA in a retrograde manner.

Pan et al. have clearly defined the retrograde vascular pedi-

cle. According to their research, the descending branch always
anatomised with the lateral superior genicular artery or the pro-
fundal femoral artery or both. They also mentioned that the
mean retrograde perfusion pressures in RALT flaps are adequate
for flap survival. As regards venous drainage, the flap drained
through the vein comitantes along the sides of the arteries.

According to Shieh et al., type of perforator is important in
deciding on the flap. Fortunately, in the current study all the per-
forators originated from the descending branch of the LCFA (type
I or type III), except in one patient where the perforator originated
from the transverse branch of LCFA (type II). In this situation,
the lateral circumflex femoral vessel proximal to the bifurcation
of the transverse and descending branches was ligated, also trying
to preserve the vein comitantes as much as possible.

We agree with Demirseren et al. that pivot point location
is an important step in flap elevation. The pivot point of the
RALT flap can be determined at 3-10 cm proximal to the lateral
superior angle of the patella. They also mentioned that the ter-

mal part of the descending branch can be dissected carefully
up to 10 cm above the knee. If a longer pedicle is needed, the
pivot point can be shifted distally up to 3 cm above the knee.
In the current study, eight patients (80%) had musculocuta-

neous perforators and only two had a septocutaneous perforator
(20%). Also in the current study, RALT perforator flaps with
pedicles of about 26 cm were safely transferred, but the others
needed to dissect up to 3 cm above the knee. Transient, mild
congestion immediately after inset was seen in two cases,
which resolved within a few days with no adverse sequelae on
flap survival. This coincides with the explanation of Wong and
Tan. They postulated that mechanisms that enable reverse flow
include “crossover” flow via bypass channels connecting the
paired vein comitantes.

Gravvanis et al. compared the option of distally based ALT
flap vs. gastrocnemius flap, and concluded that ALT is less
bulky than the gastrocnemius, has a long arc of rotation to
reach above and below the knee defect, and provides large skin
territory to resurface the whole knee.

Gravvanis et al. mentioned that there is much controversy
in the literature regarding the optimal management of skin
necrosis around the knee. Muscle flap remains the standard to
which all other flaps should be compared. Perforator flaps have
been a true revolution in soft tissue reconstruction around the
knee, with particular advantages due to their low donor mor-

bidity and long pedicles. In the case of a free flap, the choice
of recipient vessels is the key point to the reconstruction. With
meticulous preoperative planning, by identifying the recon-

struction needs and by understanding the reconstructive algo-

rithm, the surgeon should be able to manage a knee defect with
a high success rate.

Operative times in our cases varied between 80 and 120
minutes; these times are no longer than the operative times for
the other free flap approaches that are used to treat knee de-

fects. Also, the operative times decrease with increasing expe-

rience (Table II).

The donor site was closed primarily in one patient (the flap
width was no more than 8 cm); in all the other patients, the
donor site was large and was closed with partial thickness skin
graft. Fortunately, all of the patients in our series were male
and they did not complain about the donor-site scar because
they could be easily hidden. We used debulking procedures in
two cases. We tried to plane the flap in the lower two-thirds of
the thigh (subcutaneous fat is thinner in the lower two-thirds
than in the upper half of the thigh) to avoid excess bulk.
The release of contractures results in large soft tissue defects at the knee, so the size of the flap is another important factor. Fortunately, the ALT flap provides a very large skin territory. We used very large flaps based on only one perforator. The largest flap in our series was 26×10 cm.

The knee was splinted in the extended position for only 1 week in the postoperative period. During the follow up period, there was no recurrence of contracture in any of the patients.

As regards function outcomes, all the patients in the current study demonstrated a gradual improvement in range of knee motion after a postoperative specialized program of physiotherapy. Two patients (20%) did not regain full range of motion. In those cases, the achieved range of motion was good enough not to disturb the patients’ usual motions. Also, time from injury to patient presentation at our clinic was no more than 6 months (Table II). In my opinion, in the case of longstanding contracture of joints, there is more than one tissue affected, such as bone, capsule, muscle, tendons, ligaments, vessels and nerves. Thus, it is not always possible to release contracture to the full extent, so function outcomes in these circumstances are not encouraging. So prevention is better than cure: the knee needs to be splinted in the extended position during the healing period to prevent flexion contractures. Splints are required for 2 to 6 months, especially at night, to prevent recurrences.

Besides the critical points, such as planning of the pivot point, inclusion of muscle cuff around the pedicle and prevention of pedicle compression after transfer, also the timing of surgical intervention on the post-burn knee contracture is a very important factor for achieving good aesthetic and function outcome. The RALT perforator flap is an excellent choice, both functionally and aesthetically, for the reconstruction of soft-tissue defects around the knee joint.

Conclusion

The RALT perforator flap is the cornerstone for the reconstruction of soft-tissue defects around the knee with acceptable aesthetic and functional results, provided that the following items are fulfilled: preservation of muscle cuff around the pedicle, the pivot point, avoidance of pedicle compression after flap inset and early surgical intervention on the post-burn knee contracture (no more than 6 months after occurrence of the contracture).

BIBLIOGRAPHY